Practical Applications of Arterial Performance Measures in Downtown Washington DC

2015 Joint ITS MD Annual Meeting and Traffic Signal Forum

Robin Lee W. Fish, P.E.
Practical Applications of Arterial Performance Measures

Agenda

- Background/Motivation
- Data Sources
- Practical Applications
- Future Opportunities
- Questions
Background

• Citywide Signal Optimization
 – How do we evaluate multi-modal benefits?
 • Auto
 • Bikes
 • Pedestrians
 • Transit

• Papal Visit
 – How to predict, mitigate and monitor?

• Daily Operations
 – Citizen Inquiries
 – Construction Activities
 – Signal Timing Changes
Motivation

- What data is available now?
- How are we using it?
- What have we learned along the way?
- Where do we go from here?
Data Sources

- RITIS
 - Live System Status
 - Historical Data/VPP
- WMATA AVL
- Google Traffic
 - Live/Typical
 - Waze
- Floating Car/GPS
- Bicycle Travel Time
- CCTV
Practical Applications

• Anacostia Optimization
 – 200+ Signal Arterial Network
 • Major Commuter Routes
• Downtown Optimization
 – 600+ Signal Grid Network
 – Overnight Implementation
 – Cars, Buses, Peds, Bikes
 • 49 Travel Time Routes
 • 40+ Bus Routes
 • 1,500+ Signalized Crosswalks
 • 7,000+ Cycle Trips per Day
Anacostia Results – Travel Time
Practical Applications of Arterial Performance Measures

Anacostia Results – Google Traffic

After – 8:30 AM
Anacostia Results – Bus Performance

Metro Bus Stop Arrival (18 Routes)

- **Early**
 - Before: 9%
 - After: 12%

- **On Time**
 - Before: 74%
 - After: 78%

- **Late**
 - Before: 17%
 - After: 10%
Anacostia Results – VPP Bottlenecks

<table>
<thead>
<tr>
<th>Bottleneck Direction and Location</th>
<th>Average Max Queue Length</th>
<th>Average Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before (miles)</td>
<td>After (miles)</td>
</tr>
<tr>
<td>WB Suitland Parkway at South Capitol Street</td>
<td>3.34</td>
<td>2.6</td>
</tr>
<tr>
<td>WB Pennsylvania at Minnesota Avenue</td>
<td>1.49</td>
<td>1.06</td>
</tr>
<tr>
<td>WB Good Hope at Minnesota Avenue</td>
<td>0.82</td>
<td>0.72</td>
</tr>
<tr>
<td>WB Pennsylvania at Branch Avenue</td>
<td>0.81</td>
<td>0.76</td>
</tr>
<tr>
<td>NB South Capitol at Potomac Avenue</td>
<td>0.69</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Downtown Results – Floating Car Travel Time
Downtown Results – Floating Car Video
Downtown Results – VPP Travel Time

Travel time for 12TH ST between Pennsylvania Ave and Massachusetts Ave
Averaged by 1 hour in April 21, 2015 through April 23, 2015 and April 28, 2015 through April 30, 2015

Northbound

Travel time (minutes)
Downtown Results – Floating Car vs. VPP

<table>
<thead>
<tr>
<th>12<sup>th</sup> Street</th>
<th>Floating Car</th>
<th>VPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>5:02</td>
<td>4:52</td>
</tr>
<tr>
<td>After</td>
<td>2:42</td>
<td>3:51</td>
</tr>
<tr>
<td>Difference</td>
<td>2:20 (46%)</td>
<td>1:01 (20%)</td>
</tr>
</tbody>
</table>
Downtown Results – VPP Congestion
Downtown Results – Floating Car vs. VPP

<table>
<thead>
<tr>
<th>Rhode Island</th>
<th>Floating Car</th>
<th>VPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>9:46</td>
<td>13:06</td>
</tr>
<tr>
<td>After</td>
<td>7:35</td>
<td>9:48</td>
</tr>
<tr>
<td>Difference</td>
<td>2:11 (22%)</td>
<td>3:18 (25%)</td>
</tr>
</tbody>
</table>

- **What about stops?**
 - GPS Runs can give us this data directly
 - Not available in VPP (as far as I know!)
Downtown Results – User Costs

- **VPP User Cost Tool**
 - Aggregate performance data and user value-of-time
 - Estimates user cost associated with congestion

<table>
<thead>
<tr>
<th>Rhode Island</th>
<th>User Delay Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Day Before</td>
<td>$41,797</td>
</tr>
<tr>
<td>Average Day After</td>
<td>$32,116</td>
</tr>
<tr>
<td>Weekly Savings</td>
<td>$9,681</td>
</tr>
<tr>
<td>Annual Savings</td>
<td>$2,420,250</td>
</tr>
</tbody>
</table>
Downtown Results – WMATA AVL
Downtown Results – WMATA AVL

Average Downtown WMATA Bus Route Travel Time (AM Peak)

- Comparison of average bi-directional bus route travel time before and after changes.
- Data unavailable for certain routes.
- % Travel Time Improvement chart shows improvement in travel time for selected routes.
• Annual savings of 315,000 person-hours.
Downtown Results – Bicycle Travel Time
Downtown Results – Bicycle Travel Time

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Travel Time</td>
<td>Stops</td>
</tr>
<tr>
<td>AM Eastbound</td>
<td>7:30</td>
<td>5</td>
</tr>
<tr>
<td>AM Westbound</td>
<td>8:30</td>
<td>7</td>
</tr>
<tr>
<td>MD Eastbound</td>
<td>8:10</td>
<td>8</td>
</tr>
<tr>
<td>MD Westbound</td>
<td>8:20</td>
<td>7</td>
</tr>
<tr>
<td>PM Eastbound</td>
<td>10:30</td>
<td>8</td>
</tr>
<tr>
<td>PM Westbound</td>
<td>7:45</td>
<td>7</td>
</tr>
</tbody>
</table>
Downtown Results – Pedestrian Improvements

- Pedestrian Clearance Times recalculated to meet 2009 MUTCD.
- FDW values “before” and “after” implementations compared.
Papal Visit

- Traffic analysis of potential impacts
- Development of mitigation measures
- Real-time traffic monitoring and management
Papal Visit

• Typical DC Traffic
Papal Visit

- Expected Queuing Impacts – Constitution Ave Closure
Papal Visit

- Expected Queuing Impacts – 14th Street Closure
Papal Visit

• CCTV + Live Traffic Data Monitoring
Papal Visit

• Google Traffic Typical vs. Live Data
Papal Visit

- RITIS Comparison Tweeted by MATOC
Daily Operations

- Citizens note increase in congestion/travel time on a Wednesday
 - Field Observations performed on Tuesday show typical conditions.
Daily Operations

• What happened?
 – Checked RITIS incident data
 – Checked RITIS construction data
 – Checked signal timing data
 – Checked signal trouble calls
 – Checked for special events in the area
 – Etc.

• Data can tell us that *something* happened but not necessarily why or what.
Where do we go from here?

- Heavier reliance on VPP travel time data for analysis
- Sensys/WiFi travel time data
- Field-collected travel time data for validation and immediate results
- Heavier use of Transit AVL data for TSP and Signal Optimization evaluation
- Leverage available Bike data from bike-share services
- Pedestrians? Crowdsourced GPS?
Questions?

Robin Lee W. Fish, P.E.
Email: rfish@sabra-wang.com
Phone: (443) 741-3500
Website: www.sabra-wang.com